Exercise 1.81

Water has a density of $0.997 \mathrm{~g} / \mathrm{cm}^{3}$ at $25^{\circ} \mathrm{C}$; ice has a density of $0.917 \mathrm{~g} / \mathrm{cm}^{3}$ at $-10^{\circ} \mathrm{C}$. (a) If a soft-drink bottle whose volume is 1.50 L is completely filled with water and then frozen to $-10{ }^{\circ} \mathrm{C}$, what volume does the ice occupy? (b) Can the ice be contained within the bottle?

Solution

By the law of conservation of mass, the mass of water in the bottle is equal to the mass of ice formed when frozen.

$$
m_{\mathrm{ice}}=m_{\mathrm{water}}
$$

Use the fact that mass is equal to density ρ times volume V.

$$
\rho_{\text {ice }} V_{\text {ice }}=\rho_{\text {water }} V_{\text {water }}
$$

The question is asking for the volume that the ice occupies, so solve this equation for $V_{\text {ice }}$.

$$
\begin{aligned}
V_{\text {ice }} & =\frac{\rho_{\text {water }} V_{\text {water }}}{\rho_{\text {ice }}} \\
& =\frac{\left(0.997 \frac{\mathrm{~g}}{\mathrm{~m}^{3}}\right)(1.50 \mathrm{~L})}{0.917 \frac{\mathrm{~g}}{\ell \mathrm{~m}^{3}}} \\
& \approx 1.63 \mathrm{~L}
\end{aligned}
$$

This is too much for the $1.50-\mathrm{L}$ bottle to contain, so the bottle will burst.

